New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration

by Berthet C., Castillo X., Magistretti P.J., Hirt L..
Year: 2012 ISSN: DOI: 10.1159/000343657

Bibliography

New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration 
Berthet C., Castillo X., Magistretti P.J., Hirt L..
Cerebrovasc Dis. 2012;34(5-6):329-35

Abstract

Pub_NEN_2012Background: Lactate protects mice against the ischaemic damage resulting from transient middle cerebral artery occlusion (MCAO) when administered intracerebroventricularly at reperfusion, yielding smaller lesion sizes and a better neurological outcome 48 h after ischaemia. We have now tested whether the beneficial effect of lactate is long-lasting and if lactate can be administered intravenously. Methods: Male ICR-CD1 mice were subjected to 15-min suture MCAO under xylazine + ketamine anaesthesia. Na l-lactate (2 μl of 100 mmol/l) or vehicle was administered intracerebroventricularly at reperfusion. The neurological deficit was evaluated using a composite deficit score based on the neurological score, the rotarod test and the beam walking test. Mice were sacrificed at 14 days. In a second set of experiments, Na l-lactate (1 μmol/g body weight) was administered intravenously into the tail vein at reperfusion. The neurological deficit and the lesion volume were measured at 48 h. Results: Intracerebroventricularly injected lactate induced sustained neuroprotection shown by smaller neurological deficits at 7 days (median = 0, min = 0, max = 3, n = 7 vs. median = 2, min = 1, max = 4.5, n = 5, p < 0.05) and 14 days after ischaemia (median = 0, min = 0, max = 3, n = 7 vs. median = 3, min = 0.5, max = 3, n = 7, p = 0.05). Reduced tissue damage was demonstrated by attenuated hemispheric atrophy at 14 days (1.3 ± 4.0 mm3, n = 7 vs. 12.1 ± 3.8 mm3, n = 5, p < 0.05) in lactate-treated animals. Systemic intravenous lactate administration was also neuroprotective and attenuated the deficit (median = 1, min = 0, max = 2.5, n = 12) compared to vehicle treatment (median = 1.5, min = 1, max = 8, n = 12, p < 0.05) as well as the lesion volume at 48 h (13.7 ± 12.2 mm3, n = 12 vs. 29.6 ± 25.4 mm3, n = 12, p < 0.05). Conclusions: The beneficial effect of lactate is long-lasting: lactate protects the mouse brain against ischaemic damage when supplied intracerebroventricularly during reperfusion with behavioural and histological benefits persisting 2 weeks after ischaemia. Importantly, lactate also protects after systemic intravenous administration, a more suitable route of administration in a clinical emergency setting. These findings provide further steps to bring this physiological, commonly available and inexpensive neuroprotectant closer to clinical translation for stroke. 

Keywords

Cerebral ischaemia Lactate Middle cerebral artery occlusion Neuroprotection Stroke Translational research